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A b s t r a c t  

Starting from a microscope model of the intermolecular 
potential, a unified description is presented of the Bragg 
scattering law in the orientationally disordered and in the 
ordered phase of solid C6o. The orientational structure 
factor is expanded in terms of symmetry-adapted surface 
harmonics. The expansion coefficients are calculated 
from theory and compared with experiment. Their 
temperature evolution is studied in the disordered phase 
at the 260 K transitions and in the ordered phase. In the 
ordered phase, new results from high-resolution neutron 
powder diffraction are given. In the disordered phase, 
space group Fm3m,  the reflections have A~g symmetry; in 
the ordered phase, space group Pa3, reflections of T2g 
symmetry appear and in addition the A lg reflections are 
renormalized. The orientational density distribution is 
calculated. The effective crystal-field potential is con- 
structed, its temperature evolution in the ordered phase is 
studied and related to the occurrence of an orientational 
glass. 

©1995 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

I. I n t r o d u c t i o n  

C60-fullerite is a molecular crystal (Kr~itschmer, Lamb, 
Fostiropoulos & Huffman, 1990). At room temperature, 
the space group is Fm3m (Fleming et al., 1991) and the 
molecules are orientationally disordered. At a transition 
temperature T~ _~ 260 K, the crystal undergoes a phase 
change (Dworkin et al., 1991; Heiney et al., 1991 a) to a 
Pa3 structure (Sachidanandam & Harris, 1991; Heiney et 
al., 1991b; David et al., 1991). The molecules are 
orientationally ordered on four different sublattices 
(Harris & Sachidanandam, 1992). Neutron powder 
diffraction (David et al., 1991) and single-crystal X-ray 
studies (Liu, Lu, Kappes & Ibers, 1991; Biirgi et al., 
1992) of the low-temperature ordered structure have 
revealed the packing configuration of the C6o molecules. 
In an optimized ordering scheme, electron-rich double 
bonds that fuse the hexagons on the C6o molecule face 
pentagons of adjacent C60 units. This idea has been 
implemented in molecular dynamics calculations (Sprik, 
Cheng & Klein, 1992). A theoretical description of the 
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366 ORIENTATIONAL ORDER AND DISORDER IN SOLID C60 

orientationally disordered phase and the phase transition 
has been formulated with the use of multipolar rotator 
functions (Michel, Copley & Neumann, 1992); for a 
review we refer to Axe, Moss & Neumann (1994). 

In the disordered phase, the molecules are not free 
rotators but experience a crystal field of cubic symmetry, 
as was first suggested by theory. The Bragg reflections 
have At~ symmetry. X-ray synchrotron diffraction 
experiments on single crystals (Chow et al.,  1992), 
high-resolution neutron powder diffraction (David, 
Ibberson & Matsuo, 1993) and single-crystal neutron 
diffraction (Papoular, Roth, Heger, Haluska & Kuzmany, 
1993) experiments have allowed the determination of the 
orientational density distribution function in the dis- 
ordered phase. The orientational density distribution 
function is related to the crystal field (Press & Hiiller, 
1973a), and since the crystal field depends on the 
molecular structure, the diffraction experiments allow the 
testing of theoretical models of intermolecular potentials 
(Copley & Michel, 1993). The interpretation of diffrac- 
tion experiments has revealed that the single-molecule 
orientational distribution function in the disordered 
phase exhibits maxima (Lamoen & Michel, 1993a; 
Biirgi, Restori & Schwarzenbach, 1993; Axe, Moss 
& Neumann, 1994) for the same orientations that 
correspond to the setting angles (majority positions) of 
the molecules on the four sublattices in the fully ordered 
P a 3  stucture (David et al.,  1991; David, Ibberson, 
Dennis, Hare & Prassides, 1992; Biirgi et al.,  1992). 
These results show that local orientational order in the 
high-temperature phase, which is a consequence of the 
crystal field, also affects the collective ordering in the 
low-temperature phase. In the present paper, our aim is 
the understanding of the orientational density distribution 
function in the disordered and in the ordered phase from 
a unified point of view. Also in the ordered phase, as we 
will see in the following, high-resolution neutron powder 
diffraction experiments allow the determination of the 
orientational density distribution function. 

The content of the paper is as follows. In §2, we recall 
basic concepts of our theoretical description of solid C60. 
In §3, we recall the Bragg scattering law for the 
disordered phase and we derive the scattering law for 
the ordered phase. These scattering laws are formulated 
in terms of multipole expansions by means of symmetry- 
adapted surface harmonics. The expansion coefficients 
(also called diffraction coefficients) are calculated by use 
of statistical mechanics in ~4. In the disordered phase, the 
Bragg reflections have A~g symmetry and are slightly 
temperature dependent. In the ordered phase, additional 
reflections of T2g symmetry appear and, furthermore, an 
important renormalization of the A~8 reflections occurs. 
We present high-resolution neutron powder diffraction 
data on the Alg reflections in the ordered phase. The 
remarkable temperature dependence of these reflections 
is explained by theory. The influence of the lattice 
contraction is investigated. The orientational density 

distribution is calculated. In §5, we derive an effective 
temperature-dependent crystal field potential and study 
the freezing of orientational motion. 

2. Model of molecular crystal C~ 

Here, we briefly recall some basic concepts that have 
been introduced previously for a description of solid C60 
(Michel, Copley & Neumann, 1992; Michel, 1992). We 
consider a crystal that consists of N rigid molecules of 
C60 with centres of mass rigidly located at f.c.c, lattice 
sites X(n). Molecules may rotate about their centres of 
mass. Each molecule is represented by 60 atomic centres, 
60 single-bond centres and a distribution of three centres 
alng each of the 30 double bonds. Centres are labelled v A, 
where A = a, b or s denotes atoms, double bonds or 
single bonds, respectively. The position of the centre v A 
belonging to the molecule at lattice site n is written 

X(n,  UA) : X(n) + d(n, va), (2.1) 

where the direction of the vector d(n, va) is described by 
two polar angles 12(va) = [0 (VA), tP(Va) ]. All centres are 
located on a spherical shell with radius d. The potential 
between two molecules is determined by the sum of 
interactions between their centres. Orientation-dependent 
properties of molecules in crystals can be described by 
means of rotator functions (James & Keenan, 1959; Press 
& HUller, 1973b). They are defined by symmetry- 
adapted linear combinations (Yvinec & Pick, 1980; 
Michel & Parlinski, 1985) of Wigner's rotation matrices 
D'~ m 

UII r (o.)) nl  nm m r  = ~ ott<M)D t (O.))0//(S). (2.2) 
nm 

Here, o9 are the Euler angles, which describe the 
orientation of the molecule, 1 is the angular momentum 

,1 refer to the quantum number. The coefficients Oll (M)  

symmetry of the molecule. Icosahedral symmetry of the 
C60 molecule (Kroto, Heath, O'Brien, Curl & Smalley, 
1985) restricts the values of l to 0, 6, 10, 12 . . . . .  The 
coefficients at(m~) account for the symmetry of the site, 
S = O h. T h e  index r stands for (F, p, i). Here F labels 
the irreducible representations of the cubic group, p 
distinguishes between representations that occur more 
than once and i denotes the row of a given representation. 

Expanding the intermolecular potential in terms of 
rotator functions and summing over all pairs of 
molecules in the lattice, we obtain the lattice potential 
V = V RR + VcF. Here, V RR is the rotation-rotation (RR)  
interaction: 

V RR : (1/2) ~ ~ ~ J:t, r' (n - n ' ) U t l r ( n ) U t ! e ( n ' ) ;  
nn  /l' rr" 

(2.3) 

the argument n of Utlr(n) stands for w(n). VCF represents 
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Table 1. Crystal field coefficients wl p) for disordered 
phase (I) and ordered phase (II)from Lamoen & Michel 

(1994) 

t, p wl p) O) (K) wl p) (H) (K) 
6,1 470.34 383.94 

10,1 -172.18 -194.48 
12,1 -77.31 -90.51 
12,2 - 347.89 -412.46 

the crystal field, 

VCF =  CEE "'t Ut (n), (2.4) 
n I rig 

where q8 = (Als'/9). VCF has full cubic symmetry and 
the index p labels the Alg representations for a given I. 
For I = 6 and 10, p = 1, while, for I = 12, p = 1 or 2. In 
the following, we write wl p) for w~ ~8. The expansion 
coefficients Jt~, e and " ~'g wt are determined by numerical 
calculations. In Table 1, we have quoted the crystal-field 
coefficients wl p) for two different values of the cubic 
lattice constant a, taking 14.15 ,~ for the disordered phase 
and 14.10,A for the ordered phase. These results will be 
used in ~4. 

It is convenient to introduce Fourier transforms 

Utl~(k) = (1/N U2) ~ Uli~(n)exp[-ik • X(n)], (2.5) 
n 

where k is the wave vector. It has been shown previously 
(Michel, Copley & Neumarm, 1992) that the phase 
transition from the orientationally disordered phase with 
space group Fm3m to the orientationally ordered Pa3 
phase is driven by the condensation of orientational 
modes with symmetry r = (T2s, P, i) at the X point of the 
Brillouin zone. In the following, we will restrict 
ourselves to the mode T2g , p = 3 of the manifold 
1 = 10, which we consider as the leading mode, and to 
the mode Tz8, p = 2 for l = 6. We will abbreviate the 
notation by writing U/ for  Ut 1~. The index i refers to the 
three components of Tz8 symmetry. We write J u,° for the 
interaction coefficients of these modes: the symmetry 
reduction at the phase transition is represented by 

Fm3m: [ kx , ""ll[3egirX~'x ) 2e X = U, (k~) ulle(ky x)  

"-  N l / 2 r / l  # 0 ;  

2e X 3e X (2.6) 
U, (k x ) ) -- U t (ky 

i e X ea3. =Ut  (kz) = 0] ---> 

Here the index e indicates that U~ e is a thermal 
expectation value; the star of wave vectors of 
the condensing modes is k x = (2rt/a, O, 0), 

x = (0, 2rt/a, 0), kz x -- (0, 0, 2:rr/a), where a is the k y  

cubic lattice constant. In real space, the condensation 
scheme corresponds to the distribution of the order- 
parameter components (rh, rh, rh); (-r/l, -r/t, r/t); 
(r/t, -r/t, -r/t); (-rh,  r/t, -r/t) on the sublattices (0, 0, 0); 
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a/2 (0, 1, 1); a/2 (1, O, 1) and a/2 (1, 1, 0), respectively. 
Labelling the sublattices by o" = 0, 1, 2 and 3, respec- 
tively, we introduce the vectors r/l(Cr ) with components 
r/~(t~), i = 1, 2, 3. At the X point of the Brillouin zone, the 
Fourier-transformed interaction J~ti~(k) becomes attractive 
and has a maximum: 

ij x 
J~e(k~ ) = -Ju,80, (2.7) 

where, for a = x, i has values 2 or 3, for o~ = y, i = 1, 3 
and for a = z, i = 1, 2. Taking as value of the lattice 
constant a = 14.10,A, Lamoen & Michel (1994) have 
obtained Jlo l0 = 4693.5, J66 -- 1950.1, J61o = 321.2K. 
The large value ofJlo 1o has led to the conclusion that the 
phase transition is primarily driven by the condensation 
of the dominant mode T28, p = 3 belonging to the 
manifold l -- 10. 

In the molecular-field approximation, the interaction 
V RR reads 

RR 
vM,  E E E E  .,',,, ' ' - -  - -  U l ( n e ) r / l , ( t 7  ) .  (2.8) 

ll' tr n o i 

Here no runs over all sites of the sublattic tr. The total 
lattice potential now becomes 

VM F RR = V~F + VCF. (2.9) 

The order-parameter components are then given by 

r/)(tr) = (U](na))M F -- Tr[U](n")exp(-VMF/T)] 
Tr[exp(-VMF/r)] 

(2.10) 

Here, the trace Tr stands for an integration over Euler 
angles. In a previous work (Lamoen & Michel, 1994), 
the order-parameter amplitude q~0 was obtained from a 
Landau expansion of the free energy. A first-order phase 
transition occurs at a temperature T~ = 201.9K. The 
temperature evolution of r/l 0 is given in the last column 
of Table 3, ~t. Owing to the coupling J610, a 
condensation of r/~ 0 entails a condensation of r/~. In 
linear approximation we find for the amplitude 

r/6 J6  1 0 / T  j 2 = ((U6))CFqI0, (2.11) 

where the thermal average is calculated with VCF. At the 
transition we obtain 1/10 ~_ -0 .067 and 176 "~ --0.01. The 
values of rh0 quoted in Table 3 have been calculated 
under the assumption/76 = 0 ,  that is J6 10 -~ 0. 

3. Bragg scattering law 

We will consider the differential scattering cross section 
for neutrons and X-rays (synchrotron radiation). The 
results obtained for the case of neutron scattering will 
also apply to X-ray scattering (Copley & Michel, 1993). 
This point of view is cofirmed by combined neutron and 
X-ray diffraction experiments on single crystals of C60 
(Papoular, Roth, Heger, Haluska & Kuzmany, 1993). 
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Table 2. Molecular shape factor 
0 6 10 12 

16.92 2.56 19.35 7.89 

The Bragg part of the total differential scattering cross 
section per unit solid angle S2Q reads 

der/dS2QIB - ) ~ exp[iQ . X(n)](Fq(Q))[e)~. (3.1) 

Here hQ is the momentum transferred in the scattering 
process, ~.c is the neutron scattering length for the carbon 
nucleus, and F~(Q) is the molecular structure factor 

Fa(Q) = ~ exp[iQ, d(n, v~)]. (3.2) 

Expanding in terms of molecular rotator functions (Press 
& HOller, 1973a; Pick & Yvinec, 1980), we obtain 

F~,(Q) = 4rr ~--]~ y~jt(Qd)i t g~ST(I2Q)UtI~(n). (3.3) 
l r 

Here, Jt denotes the Bessel function. The quantity g~ 
defines the molecular shape factor [originally called the 
form factor (Michel & Parlinski, 1985)] due to the 
configuration of atomic nuclei. Numerical values of g~ 
are given in Table 2. The functions S 7 are the site- 
symmetry-adapted surface harmonics (Bradley & 
Cracknell, 1972). 

(a) Disordered phase 

This case has been studied previously (Copley & 
Michel, 1993) and we only recall the main result. At any 
site of the f.c.c, lattice, the time-averaged symmetry is 
Alg. One obtains for the Bragg scattering cross section 

dcr/dS2QI 8 = [N(2rr)3/Vc] ~ 3 ( Q -  G)lazr 
G 

x ~ ~, j,(Qd)i' K~P)(S2Q)V~ p) 2k~. (3.4) 
1 p 

Here, V c -- a3/4 is the volume of the primitive unit cell 
of the f.c.c, lattice, G is a reciprocal-lattice vector. We 
have used the cubic harmonics (Bethe, 1929) 

K}P)(,f2) -- S;"(Y2), r,s = (ale,  p). (3.5) 

The thermal coefficients 

. -lrlg. y~,o) = g,~ (U t )CF (3.6) 

are calculated with use of the crystal field. 

(b) Ordered phase 

The orientational order breaks the translation symme- 
try of the orientation density on the four sublattices. 
Distinguishing between the sublattices, we write for the 

Bragg scattering cross section 

d ° / d $ 2 Q  B = I ~  ~ e x p [ i Q .  X(n,,)](Fn,,(Q))12X~:, 

(3.7) 

where F~ is given by expression (3.3) with n replaced by 
n o . In calculating the thermal average, we take into 
account the molecular field potential (2.9) and retain only 
contributions of Alg and T28 symmetry. The Pa3 space 
group permits the occurence of non-zero thermal 
averages of A2s and Tlg symmetry (see e.g. Heid, 1993; 
Rapcewicz & Przystawa, 1994). Their effect is to rotate 
the C60 molecular orientation away from the (110) mirror 
planes of Fm3m. Experimental evidence shows that this 
deviation is very small (BiJrgi et al., 1992). In the 
following, we will neglect contributions of A2g and Tig 
symmetry. The thermally averaged molecular structure 
factor now reads 

( F a o ( Q ) ) M F  - -  (Fa'A1s(Q))MF + ( F a ' T 2 s ( Q ) ) M F ,  (3.8) 

where 

(Fa'A's(Q))MF = 4zr ~ ~ jt(Qd) t'/"(P)''^l t~ZQ)Yl" (p) (3.9) 
I p 

and 

3 a,r2g 
(FT, (Q))MF = --4rr)--~ ~ jt(Qd)Sj(I'2Q)~ rl~(tr). 

l i=1 

(3.10) 

In expression (3.9), we have defined 

V}p) = g~ (Ul  I rig )iF" (3.11) 

With the use of (3.8)-(_3.10), we rewrite the scattering 
cross section within Fm3m as 

d~ /d f2Q B = d~/dY2Q A,, + dcr/df2Q T2g. (3.12) 

Here, the first term on the right-hand side has the same 
form as (3.4); however, y~P) is given by (3.11) instead of 
(3.6). As we will show in ~4, this fact leads to an 
important renormalization of the reflections of A18 
symmetry in the ordered phase. The second term reads. 

da /d f2QI  T2' = (N,/VI)(ezt) 3 ~ ~ 3(Q - Gx)(a~r) 2 
l , l '  C~ 

x{Jl(Qd)g']Jl'(QD)g~[ y~IJI°y(Q) 

• ]!" + ~ , l ~ ( Q ) c o s ( Q  ¢o~) o 
oo J 

(3.13) 

where the prime on the summation sign indicates tr #: o" 
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and where 

(3.14) 

In (3.13), we have N ! = N/4, V~ = a 3 and C; x is a 
reciprocal-lattice vector of the simple cubic lattice with 
lattice constant a. The vector r ~°~ relates neighbouring 
molecules with different orientations. In deriving (3.12), 
we have verified that there are no interference terms 
between contributions from A~g and T2g symmetry. In the 
following section, we will show how the scattering law is 
related to the orientational density distribution function. 

The orientational ordering in solid C~ has been 
investigated in an important paper by Harris & 
Sachidanandam (1992). Starting from the positions of 
oriented icosahedra on a f.c.c, lattice for the space group 
Pa3, these authors have derived symmetry relations 
between the structure factors of the four molecules in the 
unit cell of the simple cubic lattice. For instance, the 
structure factor of the molecule centred at (0,0,0) 
(labelled by the subscript 0) is related to the structure 
factor of the molecule centred at (0, a/2, a/2) (labelled 
by subscript 1) by 

Fo(Qx, Qy, Qz) = F,(Qx, Qy, -Qz). (3.15) 

Similar relations are obtained for the other pairs of 
molecules in the simple cubic unit cell. 

We will now show that our formulation of the 
structure factor in terms of symmetry-adapted surface 
harmonics is in agreement with relation (3.15). Using the 
structure factor (3.10), we get for the molecule centred at 
(0,0,0) 

<Fo'T2'(Q)) - ~ C,(Q)tS:(I2Q) 
l 

+ $2(-C2Q)+ S3(12Q)]rh, (3.16) 

and for the molecule centred at (0, a/2, a/2) 

(F~'r2S(Q)> = ~ ct(a)[-S~(f2O) 
I 

- S2(I2Q) + S3(~o)]rh, (3.17) 

where Ct-4rcjt(Qd)g~. We observe that the sur- 
face^ harmonics S~(Y2Q)  ̂of T2x symmetry transform 
as QyQz, QzQx and QxQy for i - - 1 , 2  and 3, re- 
spectively, where Qx = a~ /a, O_y = Qy/Q, (~z = QJQ. 
It is now obvious that (3.16) and (3.17) are related by an 
equation similar to (3.15). It is straightforward to show 
that the contributions (3.9) to the structure factor also 
satisfy the same symmetry relations. Indeed, the cubic 
harmonics of Als symmetry are even functions of (2x, ay 
and Q~. We conclude that the present structure factors 
fulfil the general symmetry relations of the Pa3 structure 
that were derived by Harris & Sachidanandam (1992). 
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This result is important; it demonstrates the validity of 
our formulation of the Pa3 structure in terms of surface 
harmonics of A18 and T2~ symmetry. 

4. Diffraction coefficients and orientational 
distribution 

Here, we will investigate the diffraction coefficients that 
refer to the reflections of A~g symmetry. In the disordered 
phase, they are calculated by using (3.6), the thermal 
average being taken with the crystal field VCF. In the 
ordered phase, we use (3.11) with the mean field 
potential VMF. The calculations have been performed 
by taking the values of the crystal-field coefficients w~ p) 
from Table 1. The results obtained by numerical 
integrations are quoted in Table 3 for a series of 
temperatures. We have restricted ourselves here to values 
of I < 12. Notice the change of sign of y6 (l) in the ordered 
phase. 

We have seen in §3 that the coefficients y~P) can be 
determined from diffraction experiments. For the case of 
the disordered phase, a synchrotron X-ray study on 
single crystals was carried out at room temperature by 
Chow et al. (1992). More recently, neutron powder 
diffraction (NPD) data became available (David, Ibber- 
son & Matsuo, 1993). The coefficients Clp obtained in 
the work of Chow et al. are related to the coefficients y~P) 
in the present paper by y~P)= g~Ctp x 10 -3, where 
g~ = 60/(4rr) v2. We have quoted the corresponding 
quantities y~P) in Table 4. In taking over the neutron 
powder diffraction results from experiment, we should 
mention that, owing to a normalization error, the 
coefficients Ctp for l g: 0 quoted by David, Ibberson & 
Matsuo (1993) are too large by a factor of 2 ~/2. After 
correcting this error, we have obtained the values NPD in 
Table 4. In comparing the experimental data with the 
theoretical values of the coefficients y~P) for T > T~ from 
Table 3, we see that the signs of all coefficients for 
l < 12 are correct and that the numerical values are, in 
general, fair. A discrepancy remains: the theoretical value 
of ,,(1) -10 because the absolute value of the crystal-field 
coefficient Wl0"(~) is too large. We will come back to this 
point in §5. 

High-resolution neutron powder diffraction measure- 
ments of the coefficients y~P) have been extended by one 
of the authors (WIFD) to the ordered phase. The results 
are shown in Fig. l 1. Most remarkable is the temperature 
behaviour of }~6 (), which changes sign near T~. In 
comparing these results with the theoretical calculations 
of y~P) in Table 3, we see that the overall temperature 
dependence is described fairly well by theory. Our 
theoretical results become less valid at lower T since our 
method of calculating the order-parameter amplitude by 
means of a Landau expansion of the energy becomes 
unreliable. 

It is instructive to have analytical expressions for the 
diffraction coefficients by performing high-temperature 
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Table 3. Calculated values of  diffraction coeffic&nts y}o) 
and of order-parameter amplitude rll o 

Tt = 201.9 K is the calculated transition temperature.  

ORIENTATIONAL ORDER AND DISORDER IN SOLID C6o 

__(I) (I) (1) (2) 
T Y6 "rl0 }/12 ~12 1710 

1.238 Tl --0.430 0.840 0.038 0.599 0 
1.015 Tt -0.525 1.051 0.036 0.766 0 

T~ -0.444 0.894 0.135 0.924 -0.067 
0.941 T~ -0.373 0.970 0.278 1.283 -0.154 
0.867 Tl -0.247 1.252 0.510 1.766 -0.214 
0.792 T~ -0.037 1.963 0.810 2.201 -0.266 
0.743 T~ 0.1639 2.774 1.041 2.412 -0.300 

Table 4. Experimental diffraction coefficients at room 
temperature 

X: synchrotron X-rays;  NPD: neutron powder  diffraction. C o m p a r e  with 
values at 1.238T] in Table  3. 

y6( I) (1) . (1) ( 2 )  
" r io Y12 ]"12 

X -0.386 0.217 0.159 0.440 
NPD -0.395 0.359 0.228 0.0706 

series expansions. Starting from expression (3.6), one 
obtains in the disordered phase (Lamoen & Michel, 
1993a) for the coefficients of A¿8 modes 

y}P) ~"-g']wlP)/[T(21 + 1)1. (4.1) 

Taking the molecular shape factors from Table 2 and the 
crystal-field coefficients from column I of Table 1, we 
find that the approximate values agree in sign and in 
order of magnitude with the numerical results of Table 3. 

We now turn to a discussion of the coefficients y}P) of 
Alg modes in the ordered phase near T l, starting from 
(3.11). At the first-order phase transition, the order- 
parameter amplitude changes discontinuously from zero 
to a finite (negative) value. In addition, this change 
induces a discontinuous lattice contraction. Both effects 

C6o A19 terms 
I I 

/ =12 (1 )  , , .  

o~,~ o ® - o o ~ ' ~  / 

I=6  .a~,,'~, " , o ~'~ 

l =10  ~ °oo~ 

100 200 

tn 

g o.4 "G 

g 0.2 
E 
2 
g 
o 0 

(Z) 

Temperoture (K) 

Fig. 1. Tempera tu re  evolut ion o f  coeff icients  y~P) obtained f rom high- 
resolution neutron powder  diffraction. 

modify the potential VMF, equation (2.9). The first one 
leads to the interaction VMF RR, equation (2.8), the second 
one changes the crystal-field coefficients wl p) (see Table 
1). Consequently, we write for y)P) at the transition and in 
the ordered phase 

Y~" -- Y~P'IcF + AY~P'IRR + AY~P)l,att" (4.2) 

The term due to lattice contraction can be approximated 
by using (4.1) as 

A?'~ p) latt = --g~[wlP)(II) --w~P)(I)]/[ T(21 + 1)], (4.3) 

where wlP)(II) and wlP)(I) refer to the values of the 
crystal-field coefficients in the ordered and in the 
disordered phase, respectively. Using the values of Table 
1, we see that (4.3) leads to positive contributions to y~P) 
at the transition from the disordered to the ordered phase. 
It is instructive to relate Ay~P)[latt to the orientational 
order parameter. We observed that the change of the 
crystal-field coefficients depends on the lattice contrac- 
tion zaa. In first order, we write 

wlP)(II) - wlP)(l) = GIP)Aa. (4.4) 

Since Aa < 0, we deduce that the coefficients GI p) are 
positive. The lattice contraction is related to the change 
of the order parameter (Lamoen & Michel, 1993b): 

Aa = --8a -11AIrc rico, (4.5) 

where A is a microscopic coupling coefficient and where 
x L is the compressibility. Substituting the last two 
relations into (4.6), we get 

A~/~P) latt = [ 8 g ~  GIP)IAIXL/aT(21 + 1)]r/~ 0. (4.6) 

This contribution is positive and increases in the ordered 
phase. The remaining terms on the right-hand side of 
(4.2) are obtained by performing a series expansion in 
terms of 01o in (3.11) and by retaining the crystal field of 
the uncontracted lattice. We then find that the zeroth- 
order term y~P)ICF is given by (3.6) while the contribution 
from the order parameter reads 

(p) 2 2 Ay~P) RR = [3g~ J2o loq ̀  /2T ZcF]r/10. (4.7) 

Here the factor ZCF corresponds to the denominator of 
(2.10) with VUF replaced by VCF. The coefficients ql p) 
are defined by 

ql p) = f dwU/qg(w)[U~o(W)] 2, (4.8) 

where rig = (Alg, p). Since the square of a T2g mode has 
symmetry Atg, the coefficients ql p) are non-zero. This fact 
accounts for the renormalization of the diffraction 
coefficients y~P) by the condensation of an order 
parameter of different symmetry (in casu.)T2s versus 
Alg ). By numerial integrations we find q~' = 0.1834, 
q(l) = 0.0379, -(~) (2) 1o ql2 = - 0 . 0 1 4 2 ,  q12 = 0.0075. 
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We will now discuss in more detail the temperature 
behaviour of y6 ~1) by retuming to (4.2). The contribution 
y6~)lcv is always negative, since wt6 ~) > 0. On the other 
hand, the contributions Ay(6P)IR R and A,(P) "-'/'6 latt a r e  
positive and increase quadratically with rh0 in the 
ordered phase. It is therefore conceivable that ~)6 (I) 
becomes positive in the ordered phase. In Fig. 2, we 
have plotted the temperature evolution of y6 (~), obtained 
by numerical integrations from (3.6) and (3. I I). We see 
that },6 (I) changes sign near 0.79 T I. In experiment (see 
Fig. I), the change of sign occurs closer to T I. This 
discrepancy is due to the fact that our theoretical value of 
010 is too low, which in turn can be traced back to the fact 
that our positive value of w(6 I) is too large (see discussion 
in the next section). Experimentally, one finds that the 
first-order charcter of the phase transition is rather 
pronounced (David et al., 1992; Heiney et al., 1992; 
Moret et al., 1992). We have verified that an order 
parameter of symmetry Tag belonging to the second 
representation of the manifold l = 6 does not cause a 
change of sign of },(6 ~). In other words, the remarkable 
temperature behaviour of y6 (I) provides direct experi- 
mental support for an orientational order parameter 
belonging to the manifold l = I0, as was suggested by 
Michel, Copley & Neumann (1992). The relative 
importance of multipoles with I = I0 is also supported 
by quasi-elastic neutron scattering results (Neumarm et 
al., 1991). More recently, Yildirim, Harris, Erwin & 
Pederson (1993) have demonstrated the importance of 
multipoles belonging to the manifold I = I0 by ab initio 
calculations of the electronic charge density of the C6o 
molecule. Finally, we have investigated the influence of 

(I) the sign of rho on ?'6 by studying the correction of order 
(rh0) 3. We obtain a positive contribution to }/~) under the 

condition that r/l 0 < 0. Since experiments show that y~) 
remains positive at low T, we have additional evidence 
for the negative value of r/10. 

We now turn to the evaluation of the orientational 
density distribution function. We start from the instanta- 
neous orientational density distribution for nuclei of a 
molecule at lattice site n, which we write (Michel & 
Parlinski, 1985) as 

f ( I2;  n) = y]~ ~_, g'] U y ( n )  S[(12). (4.9) 
l r 

Here I2 = (0, ~0) is the direction of observation, S[ are the 
site-symmetry-adapted surface harmonics and U) ~ the 
molecular rotator functions. We take advantage of the 
fact that all nuclei of the C6o molecule are located on a 
single spherical shell. The orientational density distribu- 
tion function is obtained by thermally averaging over the 
orientations o~(n) (Press & Htiller, 1973a). 

In the disordered phase (Copley & Michel, 1993), 
where the site symmetry is Alg, we get, by using (3.5) 
and (3.6), 

f(I'2) = 60/art  + ~/6 (1) K~I)(I2) + yl~ ) KI~)(I2) 
2 + ~ .(p) r-(p)~,,-~ 

I"12 ~12 t~'~) + . . . .  (4.10) 
p = l  

In the ordered phase, the orientational density 
distribution depends on the sublattice. Performing the 
thermal average over the molecular orientations, we take 
into account relations (2.10) and (3.11) and obtain 

3 

f ( ~ ;  o ) - - - - E E  Y}'°) K('°)(~) + E gforl~o(a)Sio(Y2) • 
l p i = i  

(4.11) 

0.2 

(1) 
¥6 

0 

- 0 . 2  

-0.t ,  

i 

- 0 . 6  

) I 
0.7t. 1.0 T 1.2t. 

Fig. 2. Temperature evolution of  y~t). In the disordered phase we use 
expression (3.6) and in the ordered phase (3.11 ). The coefficients wl p) 
are taken from Table 1 and the order-parameter values from Table 3. 

The first term on the right-hand side refers to the modes 
of Alg symmetry. The second term accounts for the order 
parameter where we restrict ourselves to the components 

, ,  ,,,, , :  
',~ i , "I :; ---.-:: ~ " ' ~ >~" 

" ' i - . - . i _  ,x", ', " 
" ~ , . ~ .  .~ ' .. . . :" i') ~.. 

Fig. 3. Orientational density distribution function in the disordered 
phase (T = 1.238T 0, present theory. The orientational density 
distribution function is viewed down one of  the (111) directions. 
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of symmetry T2g, p - - 3 ,  belonging to the manifold 
l = 10. Formally, the Alg contributions in (4.10) and 
(4.11) are similar; however, the coefficients y~P) are 
different. In the disordered phase they are calculated with 
the use of the crystal field VCF, but in the ordered phase 
with the molecular field VMF. We have used the 
theoretical values of y~P) from Table 3 to calculate the 
orientational density distribution as a function of the 
polar angles (0, qg) - I2. In the disordered phase, we have 
plotted (4.10) for f(12). The result is shown in Fig. 3. Our 
theoretical result reproduces the overall important 
characteristics of the experiment (Chow et al., 1992), 
namely excess scattering close to the (110) bonding 
directions and scattering deficit along (111). 

In Fig. 4(a), we have drawn the orientational 
distribution function in the ordered phase, calculated by 
means of (4.11) for the sublattice (0,0,0). The coeffi- 
cients V~ p) and the order-parameter amplitude are taken 
from Table 3 for T = 0.941T i . For comparison, we show 

(a) 

(b) 

Fig. 4. (a) Orientational density distribution function in the ordered 
phase at T = 0.941T I, present theory; (b) orientational density 
distribution function obtained from neutron powder diffraction data 
at T = 0.885T~, experimental. The orientational density distribution 
functions are viewed down the unique three-fold [11 l] direction. 

in Fig. 4(b) contours of maximum scattering density 
obtained from high-resolution neutron powder diffraction 
data at T = 230K (i.e. 0.885T l, for T I - - 2 6 0 K ,  

experimental). The positions of maximum density 
derived from experiment all coincide with regions of 
maximum intensity of the theoretical plot. In obtaining 
Fig. 4(a), it is essential that the amplitude 1710 is negative. 
The negative value of the order-parameter amplitude is a 
consequence of the large negative value of the crystal- 
field coefficient Wl2 (2) 

5. Discussion: effective potential 

We have presented theoretical and experimental results 
on the diffraction coefficients y~P) in the disordered and 
in the ordered phase. The main question we want to 
answer here is: how far do these results contribute to our 
understanding of solid C60? 

We first discuss the disordered phase. The coefficients 
y~P) depend on the crystal-field coefficients w i'tp). The 
latter are related to the details of the intermolecular 
potential: the location of interaction centres on the C60 
molecule (Sprik, Cheng & Klein, 1992) and the strength 
of the interactions (repulsive Born-Mayer, attractive van 
der Waals forces) between centms on different mole- 
cules. Centres with repulsive interactions on double 

(1) and (2) bonds give positive contributions to w 6 , 14'12 (I) 14'12 
but negative contributions to .0) (Copley & Michel, Wl0 
1993), while atomic centres give negative contributions 
to all these coefficients. These subtleties render a 
parametfization of the intermolecular potential difficult, 

¢~) is very sensitive to a they also imply that in particular w 6 
change of the lattice constant (Lamoen & Michel, 1994). 
As we have seen in the previous section, the most 
relevant experimental information on the crystal field has 
been obtained from single-crystal X-ray synchrotron 
diffraction experiments (Chow et al., 1992). The results 
allow a comparison between experiment and theory. 
Studying the angular dependence of the crystal field VCF, 
(2.4), by rotating the C60 molecule counterclockwise by 
an angle ~p about a [111] axis away from the standard 
orientation, Lamoen & Michel (1993a, 1994) found that 
the crystal field exhibits not only an absolute minimum at 
lp = 98 ° but also a secondary minimum at 38 °. This 
secondary minimum is more sensitive to a change of the 
lattice constant a than the primary minimum. These 
minima in the single-molecule potential had been 
previously obtained in the disordered phase (David et 
al., 1991; David, Ibberson, Dennis, Hare & Prassides, 
1992) from the interpretation of neutron powder diffrac- 
tion data at low T. At room temperature, however, the 
experiemental data of Chow et al., (1992), as analysed in 
the work of Axe, Moss & Neumann (1994), did not 
exhibit the secondary minimum in the cystal-field 
potential. During the revision of the present work, we 
were informed by an erratum added to Axe, Moss & 
Neumann (1994) that a re-evaluation of the 300 K Bragg 
data analysis has led to slightly revised coefficients. As a 
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Table 5. Effective crystal-field coefficients ~IP)(T) (K)for 
two different temperatures, T l -- 201.9 K 

l , p  T = T  I T = 0 . 7 4 3 T  1 

6,1 455.22 - 124.86 
1 0 , 1  - 1 9 5 . 9 0  -451.58 
12,1 - 86.36 -494.77 
12,2 -591.11 - I  146.39 

result of these corrections, a distinct secondary minimum 
now appears at ~"~ 38 °. The agreement between 
experiment and theory (Lamoen & Michel, 1994) is 
thereby improved. We are looking forward to a forth- 
coming paper by Chow et al. We expect that the new 
experimental data will be very helpful if we want to 
optimize the modelling of the intermolecular potential. 

We now discuss the situation in the ordered phase. The 
main result of the previous section is the renormalization 
of the coefficients yl °). The calculated temperature 
evolution is in qualitative agreement with the 
experimental data of Fig. 1, although the theoretical 
value of Fi0 (I) is too large. The renormalization of ~00 
the coefficients y~P) can be translated in a replace_ment of 
the potential Vcv by an effective potential Vcv that 
depends on temperature. Indeed, from the calculated 
diffraction coefficients in the ordered phase, we define 0 
effective crystal-field coefficients of Alg symmetry by 
inverting (4.1): -/.00 

@P)(T) = [-T(21 + 1)/g~]y}P)(T). (5.1) 

Taking the coefficients y}P)(T) from Table 3, we obtain -a00 
for two different temperatures the values of @P) given in 
Table 5. The effective crystal field per molecule is given 
by 

f'cF(to) = ~, ~ fv~"V]'"(og). (5.2) 
I rts 

Restricting ourselves to values I < 12, we have plotted in 
Fig. 5 the potential ~'cv(~O) as a function of the rotation 
angle @ for two different temperatures. Notice the 
absolute minimum at ap = 98 ° and the relative minimum 
at 38 ° . With decreasing temperature, both minima get 200 
deeper; however, the change of the minimum at 38 ° is 
more pronounced. By studying the angular dependence 
of the function U~ ''8 (see Lamoen & Michel, 1993a), one 0 
realizes that the temperature evolution of the potential 
minimum at 38 ° can be traced back to the change of sign -200 
of y(61) or equivalently of 1~(61) • The decrease of ~(6 i) with 
decreasing T means that the repulsive forces between 

- 400 
double bonds on neighbouring molecules become less 
efficient. This situation is reminiscent of the Virial theory 
of non-ideal gasses (see e.g. Landau & Lifschitz, 1966). -600 0 
There, the repulsive part of the potential is strong at high 
T and becomes less effective at low T. Extending the 
concept of molecular field potential [see equation (2.9)], 
we define an effective molecular field at a site on 
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sublattice cr 

3 

~'MF((.O; (7) : ~'CF(O9) --  ~ J10 10U~0(LO)T/~0(O') ' (5 .3)  
i=1 

where Ui0 refers to the ith component of T2s symmetry. 
In Fig. 6, we have drawn the effective molecular-field 
potential at site (0,0,0) as a function of the rotation angle 
~. Here again we find that the absolute minimum at 98 °, 
while the relative minimum at 38 ° is becoming more 
pronounced with decreasing T. 

The minima in the potential V(w) correspond to 
maxima in the orientational probability distribution: 
P(w) o~ exp[-V(w)/T]. The preferential orientation at 
~ = 9 8  ° was first identified by neutron powder 
diffraction at low T in the ordered phase (David et al., 
1991). Subsequently (David, Ibberson, Dennis, Hare & 
Prassides, 1992), a secondary orientation at 38 ° was 
identified by the same experimental method. The 
existence of these preferential orientations could be 

I , I , 

80 120 
, I I 

0 40 160 qJ 

Fig. 5. Angular dependence of  the crystal-field potential VCF in the 
disordered phase (dashed line), and of the effective crystal-field 
potential ~'CF at T l (dotted line) and at 0.743T l (continuous line). 
Energy in K. The molecule is rotated counterclockwise around an 
axis [111] by an angle ~. 

I I ' 

:.:: 

, t , L , I , t 

40 80 120 160 

Fig. 6. Angular dependence of the effective molecular-field potential 
VMv for T = T I , th0 = -0 .067  (dashed line) and T = 0.743T I, 
rh0 = - 0 . 3 0 0  (continuous line). Energy in K. 
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traced back to details of the molecular structure. Double 
bonds fusing two hexagons on a C6o molecule constitute 
electron-rich regions. Double bonds on neighbouring 
molecules repell each other. In an optimized configura- 
tion, electron-rich regions of a central molecule face 
electron-poor regions (pentagon or hexagon faces for 

= 98 and ~ -- 38 °, respectively) of neighbouring 
molecules. Furthermore, the occurrence of a secondary 
minimum at ¢ t =  38 ° was related to the possible 
existence of an orientational glass (David et al., 1992); 
David, Ibberson & Matsuo, 1993). Subsequently, heat- 
capacity measurements (Matsuo et al., 1992), high- 
resolution dilatometry experiments (Gugenberger et HI., 
1992), low-frequency elastic properties studies (Schranz 
et al., 1993) and X-ray studies on single crystals (Sakaue 
et al., 1994) have provided additional support for the 
orientational glass concept. At low T, more than 80% of 
the molecules occupy the 98 ° orientation in the Pa3 
structure, but this occupancy remains constant with 
decreasing T _< 90K. About 20% of the molecules 
remain frozen in the 38 ° orientation (David et HI., 
1992). Our calculations demonstrate that the 38 ° 
minimum of the effective potential gets deeper with 
decreasing T, therefore it is more likely that a constant 
fraction of molecules remain trapped in the wrong 
orientation. From these considerations, we conclude that 
the orientational glass state here manifests itself as a 
single-particle freezing; however, the renormalization of 
the effective single-particle potential is driven by the 
orientational ordering, which is a collective effect. 

One of the authors (KHM) acknowledges useful 
discussions with P. C. Chow. This work has been partly 
financially supported by the Science Foundation of 
Belgium. 
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